The Inadequacy of Uncertainty Estimation in Residual Stress Measurements

And some ideas on what to do about it

Michael B. Prime

24 October 2017

Ignorance is not probabilistic.

Yakov Ben-Haim Faculty of Mechanical Engineering Technion - Israel Institute of Technology

So we generally end up with a lower bound estimate of uncertainty

Not conservative

Outline

- Motivation
- Conventional uncertainty estimation
- Two examples of *demonstrably* underestimated uncertainties, with improvements proposed
 - Incremental slitting: improving the analytical estimation of uncertainty
 - Neutron diffraction: improving uncertainty estimation using additional data
- Thoughts

Motivation

- In the context of structural integrity, life prediction, and structural health monitoring, for example, ...
- Uncertainties on the important quantities ...
 - Lifetime, crack growth rate, stress corrosion cracking rate,

Are vital for protecting human life and assets while minimizing cost/weight/inspections, etc.

• For the purposes of this talk, we assume that uncertainties on residual stress measurements and/or predictions are a necessary part of that

Standard uncertainty

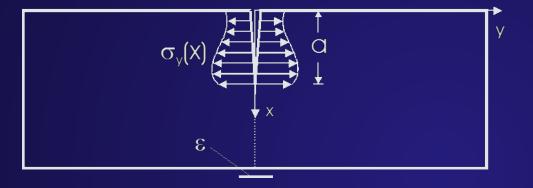
• The overwhelming majority of uncertainty estimates come from the standard error propagation equation

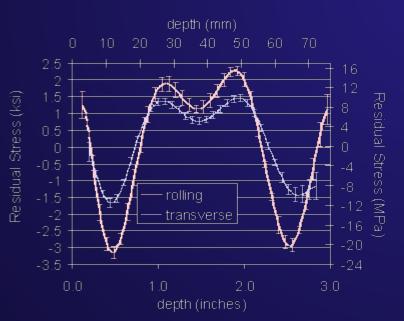
Let f(x,y) be a function of two variables, and assume that the uncertainties on x and y are known and "small". Then:

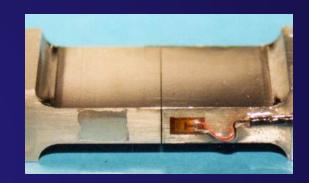
$$\sigma_f^2 = \left(\frac{df}{dx}\right)^2 \sigma_x^2 + \left(\frac{df}{dy}\right)^2 \sigma_y^2 + 2\left|\frac{df}{dx}\right| \left|\frac{df}{dy}\right| \rho \sigma_x \sigma_y$$

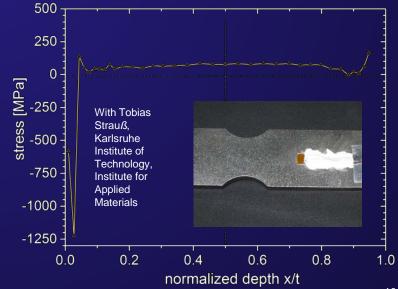
(Note that I have included the cross-terms, which cannot always be ignored)

• Where we propagate the uncertainty in the main measured quantity (e.g., strain, diffraction peak location, ...) and usually nothing else


This approach is often inadequate for two reasons:


- 1. We do not propagate all of the uncertainties
- 2. This approach is inadequate in itself


Outline


- Motivation
- Conventional uncertainty estimation
- Two examples of demonstrably underestimated uncertainties, with improvements proposed
 - Incremental slitting: improving the analytical estimation of uncertainty
 - Neutron diffraction: improving uncertainty estimation using additional data
- Thoughts

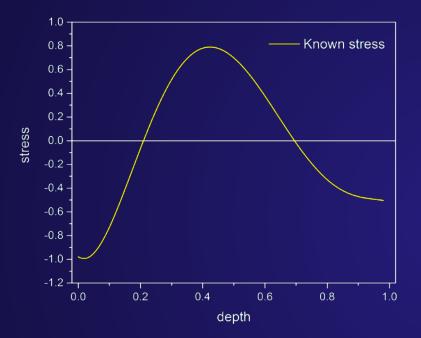
The slitting method is a powerful tool for measuring a depth profile of residual stresses

Uncertainty propagation through least squares fit inverse $\sigma(x) = \sigma - \sum_{n=1}^{n} A_n P(x) = [P] \{A\}$

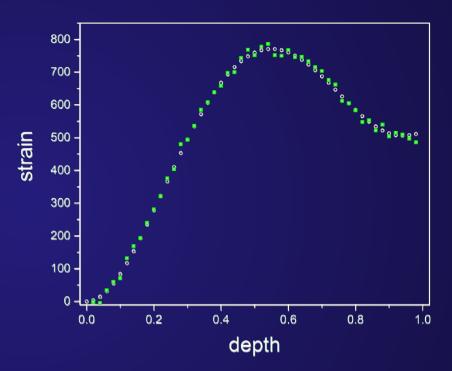
$$\mathcal{O}_{y}(x_{i}) = \mathcal{O}_{i} = \sum_{j=1}^{m} A_{j} P_{j}(x_{i}) = [P](A)$$

$$\left\{A\right\} = \left[\left(\left[C\right]^{T} \left[C\right]\right)^{-1} \left[C\right]^{T}\right] \left\{\varepsilon\right\} = \left[B\right] \left\{\varepsilon\right\}$$

$$s_{i}^{2} = u_{A_{i}}^{2} \left(\frac{\partial \sigma_{i}}{\partial A_{i}}\right)^{2} + u_{A_{2}}^{2} \left(\frac{\partial \sigma_{i}}{\partial A_{2}}\right)^{2} + \dots + 2u_{A_{i}A_{2}}^{2} \left(\frac{\partial \sigma_{i}}{\partial A_{1}}\right) \left(\frac{\partial \sigma_{i}}{\partial A_{2}}\right) + \dots$$

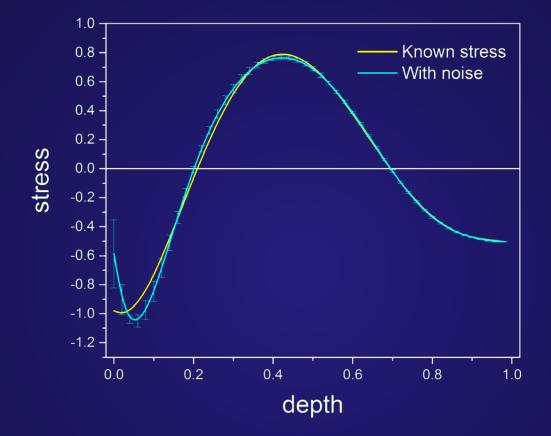

$$\frac{\partial \sigma_{i}}{\partial A_{j}} = P_{j}(x_{i}) \qquad \left\{s_{i}^{2}\right\} = \operatorname{diag}\left(\left[P\right] [V] [P]^{T}\right)$$

$$V_{kl} = u_{A_{k}A_{l}}^{2} = \sum_{i=1}^{m} \left[u_{\varepsilon_{i}}^{2} \frac{\partial A_{k}}{\partial \varepsilon_{i}} \frac{\partial A_{i}}{\partial \varepsilon_{i}}\right] \qquad \frac{\partial A_{k}}{\partial \varepsilon_{i}} = B_{ki} \qquad \left[V\right] = \left[B\right] \left[\operatorname{DIAG}\left\{u_{\varepsilon}^{2}\right\}\right] \left[B\right]^{T}$$


$$\left\{s_{i}^{2}\right\} = \operatorname{diag}\left(\left[P\left[\left(\left[C\right]^{T}\left[C\right]\right]^{-1}\left[C\right]^{T}\right]\right] \operatorname{DIAG}\left\{u_{\varepsilon}^{2}\right\} \left[\left(\left[C\right]^{T}\left[C\right]\right]^{-1}\left[C\right]^{T}\right]\right] \left[P\right]^{T}\right)\right)$$

Let's test it analytically

• Pick a test stress profile



• Use FEM to generate strain "data"

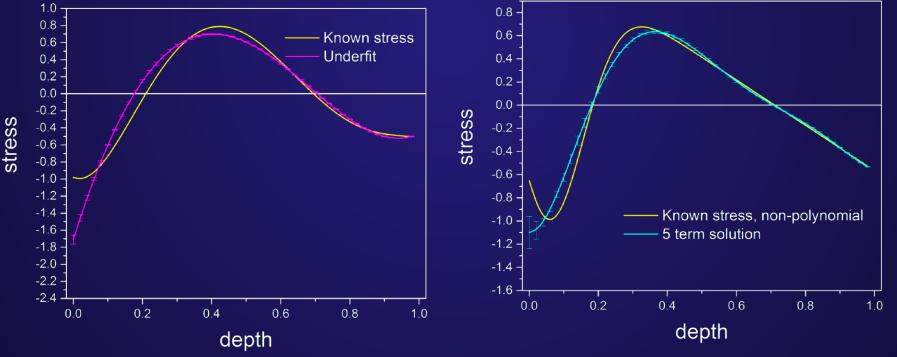
- Add some Gaussian random noise to the data
- Calculate stress and estimate errors

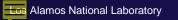
Uncertainty analysis seems to work well

- These are one standard deviation error bars (for the whole talk)
 - So they should only encompass about 68% of the distribution

The only way to test a hypothesis is to look for all the information that disagrees with it

Sir Karl R. Popper Austrian-British philosopher of science Proponent of falsificationism


More general case?

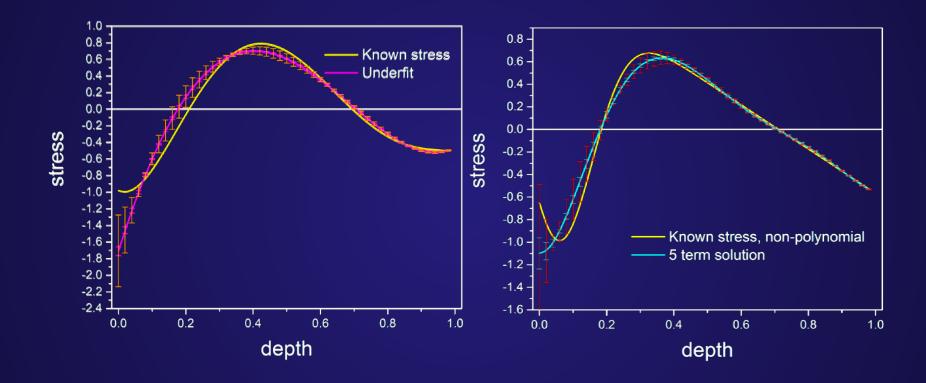

- The test case was a 4th order polynomial
- What if I solve the inverse problem with only 3rd order?
 - After all, you do not know what the "right" order is

 Or with a profile that is not polynomial at all

 Uncertainty is grossly underestimated

What to do?

• We usually estimate uncertainty based on uncertainty in the measured quantity:


 $\partial \mathcal{E}_i$

 But really our choice of the "model" to represent the stress profile is equally uncertain

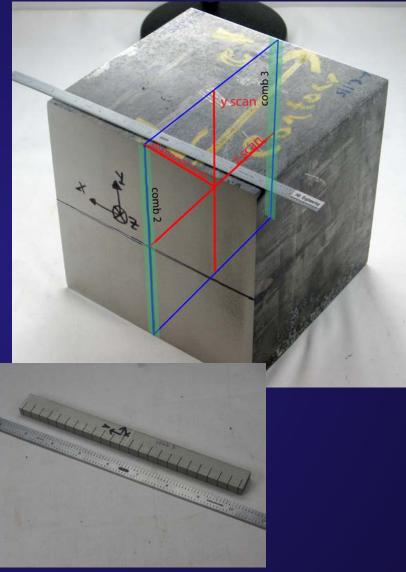
$$\sigma_{y}(x_{i}) = \sigma_{i} = \sum_{j=1}^{n} A_{y} P_{j} x_{i} = [P] \{A\}$$

- So we devised a simple model uncertainty based on the uncertainty in $n \quad \partial n$
 - Just by looking at neighboring fit orders

A big improvement

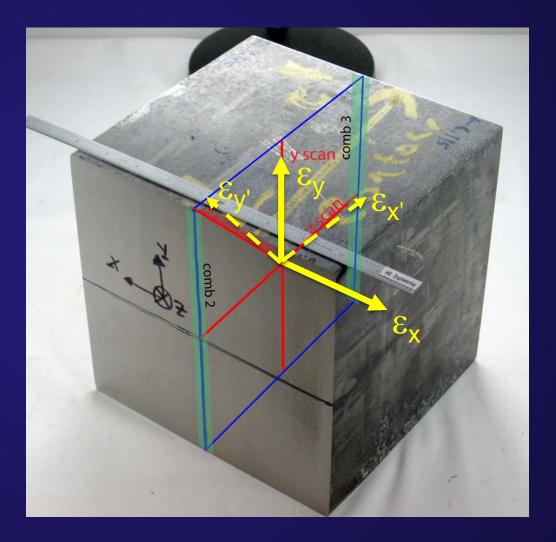
Prime, M. B., and Hill, M. R., 2006, "Uncertainty, Model Error, and Order Selection for Series-Expanded, Residual-Stress Inverse Solutions," *Journal of Engineering Materials and Technology*, **128**(2), pp. 175-185.

- Looking at the easy part of uncertainty, like the strain errors, is not good enough
- Often the bigger error is *not* the measurement but is the *model* we use to describe our physical system
 - Model error
- With some effort, we can find ways to improve the uncertainty estimate for processed data
- Least squares fits are a great way to use more data to get a better answer
 - But can give very low uncertainty estimates using simple propagation
 - Because errors often do not fit the model


Outline

- Motivation
- Conventional uncertainty estimation
- Two examples of demonstrably underestimated uncertainties, with improvements proposed
 - Incremental slitting: improving the analytical estimation of uncertainty
 - Neutron diffraction: improving uncertainty estimation using additional data
- Thoughts

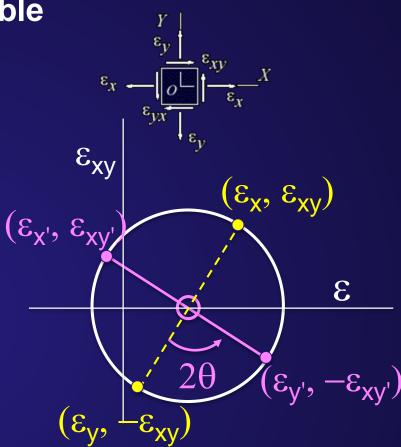
State-of-the-art neutron diffraction stress mapping on large forging


• 7050 Aluminum forging

- NOT stress relieved
- ≈ 200 mm × 200 mm × 200 mm section
- Time-of-flight diffraction at SMARTS at LANL
 - Rietveld refinement to get strains
- Low penetration on this thick part
 - So used 3 scan lines to get a reasonable map over cross-section
 - Big sampling volume
 - 5 x 5 mm slits
 - 4 mm collimators
 - Took ~ 120 hours
- Used combs to get stress-free reference (d0)

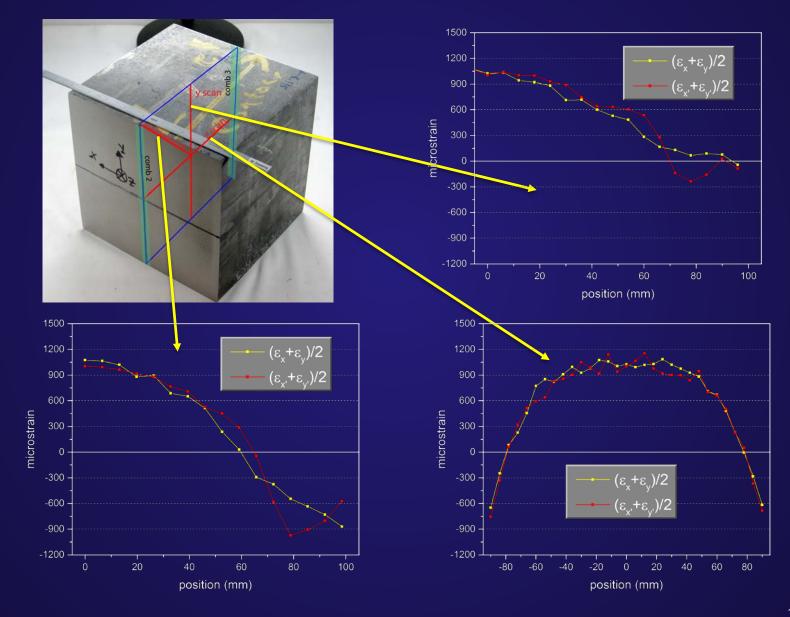
Additional neutron orientation to get \mathcal{E}_{XY} , $\overline{\tau}_{XY}$

- As is standard, used two orientations to get 3 ε's and therefore σ in *x-y-z* directions
- We were also interested in *x-y* shear stresses
 - So added an orientation at 45° in x-y plane


Redundant data gives an inviolable check on correctness of results

We have redundant information

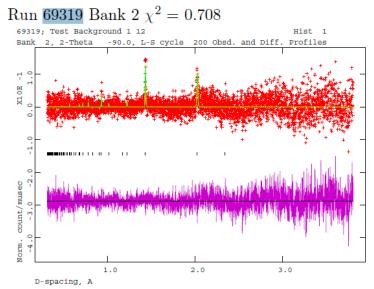
- It only takes three in-plane strains to determine the whole in-plane strain state
- We have 4
- Mohr's circle is a convenient graphic construct of in-plane strains
- Can be used to rotate strain state
- Gives an easy consistency check:
 - The center of the circle is always the same


$$\frac{\varepsilon_x + \varepsilon_y}{2} = \frac{\varepsilon_{x'} + \varepsilon_{y'}}{2}$$

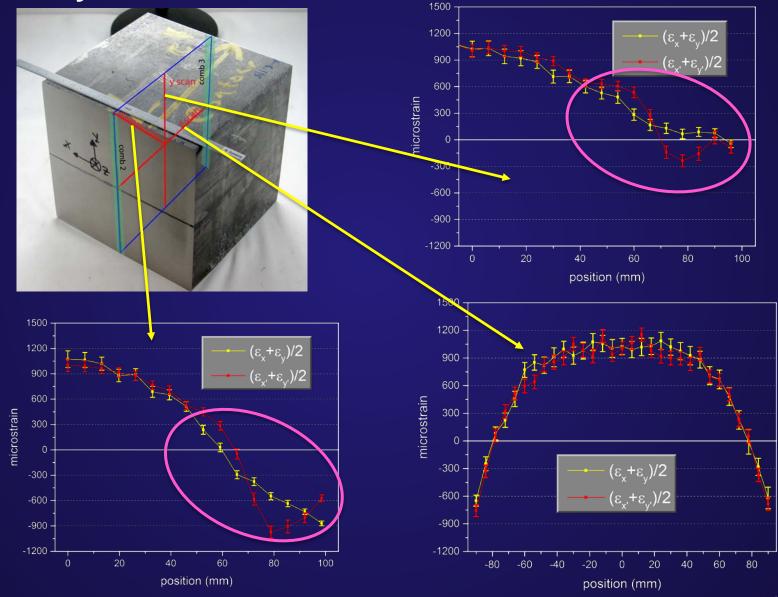
• (rotational invariant)

How good should this agreement be?

Standard Neutron Uncertainty Calculation uses Uncertainty in Peak Fit


- Rietveld refinement fits diffraction peak pattern to fcc crystal structure of aluminum to give lattice parameter and uncertainty
 - a ± δa
- Which we can propagate through all equations

$$\varepsilon = \frac{a - a_0}{a_0}$$


uncertainty on a AND a_0

$$\sigma_i = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)} [\varepsilon_i + \frac{\nu}{1+\nu} (\varepsilon_j + \varepsilon_k)]$$

- To get $\sigma \pm \delta \sigma$
- *** I added extra uncertainty to a₀ because of uncertainty in spatial variation (which was measured)

In some regions, uncertainties are underestimated, almost by definition

Los Alamos National Laboratory

Can we independently check the accuracy of the neutron results?

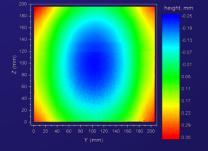
- The neutron measurements were motivated as a independent validation of fracture surface contour measurement
 - Spoke on this in Summit 2013
- But maybe we can learn something about the neutron accuracy with the comparison
- Contour/fracture uncertainties calculated based on
 - Olson, M. D., DeWald, A. T., Prime, M. B., and Hill, M. R., 2015, "Estimation of Uncertainty for Contour Method Residual Stress Measurements," *Experimental Mechanics*, 55(3), pp. 577-585.

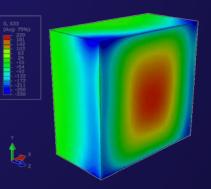
Forensic determination of residual stresses and K₁ from fracture surface mismatch

Michael B. Prime^{a,*}, Adrian T. DeWald^b, Michael R. Hill^c, Bjørn Clausen^a, Minh Tran^c

^a Los Alamos National Laboratory, Los Alamos, NM 87545, United States

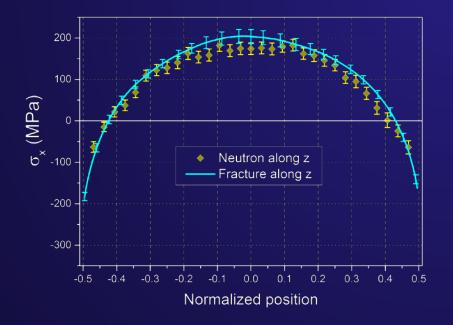

^b Hill Engineering, LLC, Rancho Cordova, CA 95670, United States ^c Mechanical and Aerospace Engineering Department, University of California, Davis, CA 95616, United State:

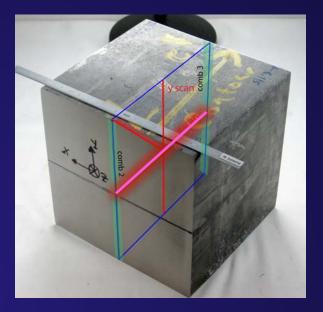


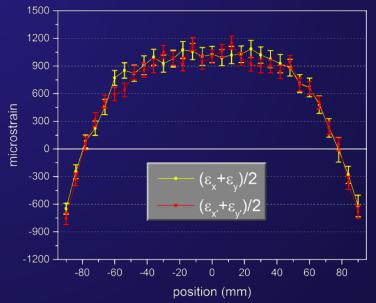


CrossMark

Y (mm)

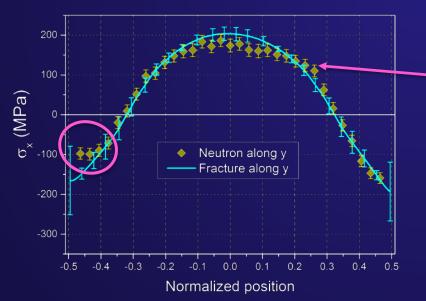


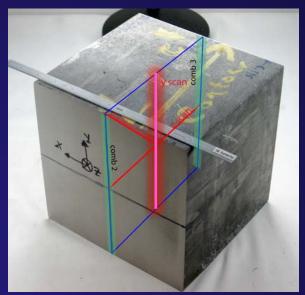


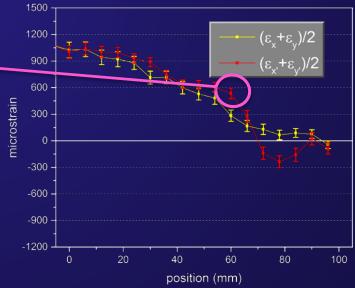


Z-scan neutron uncertainties look OK

- Neutron and fracture-surface-contour results agree within uncertainty
- And this is scan where strain consistency check also passed within uncertainty
- Interestingly, region near z=0 where ε's barely passed had biggest disagreement
 - Could be *a*₀ bias error
 - Could probably use a bigger uncertainty

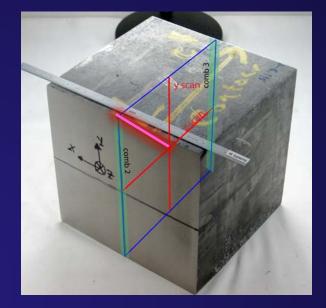


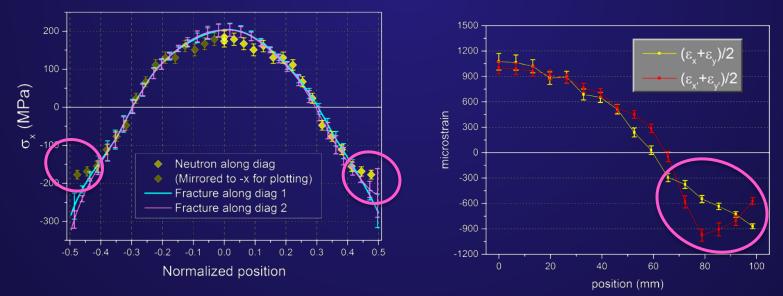




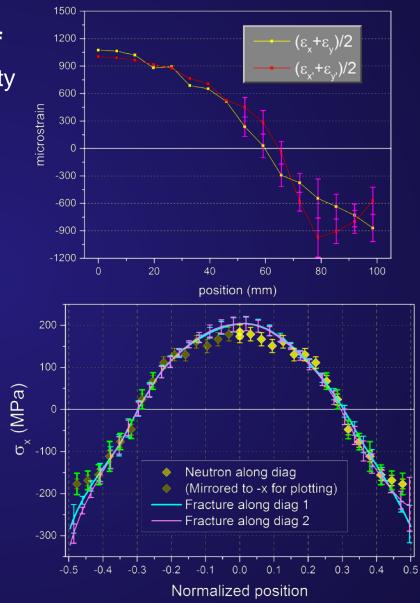
Y-scan neutron uncertainties underestimated in places

- Uncertainties underestimated sometimes
 - Correlates well with strain checks inconsistency
 - Even if some places with consistency have good agreement
- Note; if I had not added additional uncertainty to a₀, neutron error bars would be even smaller





Diagonal scan neutron uncertainties


 More correlation between strain check inconsistency and disagreement between methods

One simple improvement

- Set strain uncertainty to the larger of
 - Conventionally propagated uncertainty
 - ½ the difference in the consistency check
- Gives us a much better uncertainty estimate for this test
 - based on comparison to fracture surface results

Is this a practical approach?

Can we use this redundant data idea generally with neutron diffraction?

- Requires at least one extra orientation in order to get a redundant strain
 - Would be a 50% increase compared to usual two orientations
 - Except that you could probably get away with not doing every measurement point
- Redundant orientations are rare, and not used this way
 - A least squares fit is used to get a more accurate strain state good
 - With a lower uncertainty based on the least squares fit
 - Bad if the uncertainty is less than the consistency discrepancy

Conclusions

- Standard uncertainty propagation underestimates uncertainty more often than not
- Measurement providers can do several things to improve uncertainty estimates
 - Data driven
 - Take redundant data in order to check and if necessary increase uncertainties
 - Repeat measurements to establish repeatability-based uncertainty
 - Multiple method comparisons
 - Repeat measurements with changes
 - Contour cut in other direction
 - Different diffraction peak
 - Analysis
 - Include more uncertainty sources in error propagation
 - Include alternate uncertainty estimates
- Users can also contribute
 - Insist on documented uncertainty estimate
 - But you have to pay for it
 - Support repeats and other studies to better establish uncertainty