

APPLICATIONS OF MULTIPLE RESIDUAL STRESS MEASUREMENT METHODS

Prof John Bouchard Materials Engineering

Residual Stress Summit 2017

23-6 October 2017, University of Dayton Research

Acknowledgements

- The Open University
- British Energy
- AREVA NP
- STFC (The ISIS Facility)

- Prof Mike Hutchings
- Prof Lyndon Edwards (ANSTO)
- Prof Mike Smith (Manchester University)
- Beamline scientists (STFC)
- Dr Miguel Yescas (AREVA NP)
- Dr Richard Moat (OU)
- Dr Jon James (OU)
- Dr Sanjoo Paddea (StressMap, OU)
- Workshop staff (OU)

Measurement "Box of Delights"

Physics-based

- Neutron diffraction
- Synchrotron diffraction
- X-ray diffraction
- Magnetic
- Ultrasonic & acoustics
- ≻ EBSD
- Raman

Mechanics-based

- The Contour Method
- Slitting
- Deep hole drilling
- Block removal, slitting & layering (BRSL)
- Incremental centre-hole drilling (ICHD)
- Ring-coring
- Sach's boring
- FIB milling

Over the past 25 years there has been a revolution in techniques for measuring the deformation, strain and stress in engineered structures from atomic to metre length-scales.

But what are the risks of errors in the measured results?

Dealing with uncertainties

At least 5 approaches

- 1. Quantifying random & systematic uncertainties of measurements
- 2. Correction(s) for known error(s)
- Repeat measurements by same practitioner (to identify random scatter)
- 4. Repeat measurements by independent practitioners (human/procedural/ equipment variables)
- 5. Application of multiple measurement methods, preferably based on diverse principles and usually done by different practitioners.

UK nuclear industry norms

QA approach:- for structural integrity assessment calculations

- > QA Grade 4: Self-checking.
- > QA Grade 3: Assessment verified on a sample basis by an independent SME.
- > QA Grade 2: Assessment 100% verified by an independent SME.
- > QA Grade 1: Assessment to be **confirmed by an independent approach**

Safety case validation:- required for weld residual stress simulations used for high integrity applications

- Construct a full size mock-up and measure transient welding temperatures
- Measure residual stresses using at least 2 diverse techniques

Increase prosperity & safety

Beneficial impact (design, productivity & costs) on product life cycle

- new materials
- concept design
- process modelling & prototyping
- design by knowledge
- advanced manufacture
- assembly
- NDT, QA & non-conformance
- proof testing & commissioning
- in service inspection
- troubleshooting & forensics
- plant life extension
- recycling/disposal
- best practice codes & standards

Multiple methods:- example 1 Power plant steam vessel (1995)

Weld computation mechanics

Type 316L stainless steel

Pipe inner diameter = 390.5 mm

Pipe thickness = 15.9 mm

SAW - Submerged arc (4-7)

MMA - Manual metal arc (1-3)

FE predicted stress

Mock-up weldment measurements

- Welding transient temperatures & fusion boundary
- Distortion
- Hardness (plastic strain)
- Residual stress measurements:
 - -ring opening
 - -surface hole drilling (2 sets)
 - -neutron diffraction (3 sets)
 - -sectioning (BRSL)

FE vs measurements (weld HAZ line) Min = -351 MPa SAW - Passes 4-7 SAW - Passes 4-7

FE vs measurements (weld HAZ line) Max = 284 MPa Min = -351 MPa SAW - Passes 4-7

FE vs measurements (weld HAZ line)

The Open University

Multiple methods:- example 2 Repair welds and reheat cracking (1998)

•Reheat crack initiation » creep crack growth through-wall » steam leak
•Repair weld residual stress + plant loads at high temperature (>500°C),

Mock-up for weld repairs

Pipe OD = 432 mm, t = 19.6 mm

Pipe length = 830 mm

20° repair initial measurements

FE predictions vs measurements

Advanced 3D FE vs measurements

Tekken weld geometry:- Example 3

Standardised test for susceptibility of root pass welding to cold cracking

Tekken weld measurements

Tekken weld geometry challenge: *Neutron diffraction locations*

Tekken Alloy 52 weld metal challenge Stress-free reference matchstick

Tekken weld: *Neutron diffraction, 3 direct stress components*

Longitudinal stresses

Transverse stresses

Tekken weld at mid-length *Contour method for longitudinal stresses*

Cutting direction

Tekken weld at mid-length: *Neutron diffraction vs contour result*

Distance from weld centre-line (mm)

Longitudinal stress line profiles, 11 mm below the top surface on a transverse plane at mid-length

Multi-cut contour & multiple methods Principle of superposition

A: Original residual stresses B: Partially relaxed stress state C: Change in Stress state

$$\sigma_A(x,y,z) = \sigma_B(x,y,z) + \sigma_C(x,y,z)$$

Measure stresses in relaxed state B and apply contour boundary conditions (change in stresses C) to determine original stress state A

Tekken weld at mid-length X-ray + Contour transverse & normal stresses

0

-400

Tekken weld at mid-length: *Neutron diffraction vs XRD* + Contour

Distance from weld centre-line (mm)

Transverse stress profiles, 11 mm below the top surface across the width on a transverse plane at mid-length, measured using the multiple-method approach (Contour + XRD) & neutron diffraction

Tekken weld at mid-length: *Neutron diffraction vs XRD* + Contour

Normal stress profiles, 11 mm below the top surface across the width on a transverse plane at mid-length, measured using the multiple-method approach (Contour + XRD) & neutron diffraction

Conclusions

1. Application of multiple methods can:-

- can help identify errors,
- increase confidence in results,
- increase spatial & tensorial coverage, and
- help to satisfy industry QA requirements.
- 2. The Contour method offers a powerful approach for combining stress measurement methods

Widening industrial interest

Awareness of the importance of residual stress is increasing:

- Airframe design and manufacture
- Offshore wind
- Offshore oil and gas
- Shipping
- Earth moving industry
- Medical
- High value manufacturing
- Additive manufacture
- Automotive
- Railways
- Others.....

Consequences of residual stress

- Distortion
- Over-design (heavy, higher cost)
- Degradation (e.g. fatigue, corrosion)
- Failure (safety, high cost)
- More inspection

UK Capability Gaps

- 1. Provisions for measuring very large and heavy components using the Contour Method.
- 2. Long term provision of neutrons in Europe.
- 3. Measurement practitioners who can apply multiple methods.
- 4. Subject matter experts in industry who can specify, procure and assess multiple measurements that will deliver solutions.

International Stress Engineering Centre (I-SEC)

@Harwell (UK)

Research Hub

I-SEC Training Hub

Education

(industry, universities, schools, general public)

- Stress Engineering (solid mechanics, physics of materials, forensic etc)
- Physics & mechanics of measurement methods
- Modelling, assessment & standards

Training & Support

(for industry, academic users, collaborators)

- Measurement techniques
- Specialist equipment
- Virtual laboratory
- Remote experiments
- Augmented reality
- Data analysis/visualization
- Document and data library
- User community support

I-SEC offerings - supporting the product lifecycle

Red	cycling & isposal		New materials		Concept design	
Plant life extension "	Collabor Progr Measurement nethods research	rative R&D rammes	Access to new markets through I-SEC global reach	Visiting research fellowship program	me arsh environment research	Process, modelling & prototyping
Modelling Access to all residu measurement fac	research al stress cilities M	echanics based	techniques	Physics based	Structural integrity researc Residual engineering	h stress research
Trouble shooting & forensics Support for conducting	the suite uments S Facility 3		Harnessing full field measurement technologies for industry		Nanoscale to 5m, 5 tonne components Complex com	Design by knowledge
experiments Light More neutrons Laser peening		Light ased DIC		Laser driven NDT	DIC centre of excellence	
Pulsed laser imaging In-service inspection Validation benchmarks Codes of best practice		Codes of	In-situ mapping Knowledge transfer	Training in measurement m (face to face/vi	Training in measurement methods (face to face/virtual)	
Proc	of testing & missioning		NDT, QA & non- conformities		Assembly	